Thin Film Behavior after Ink Transfer in Printing Processes

TECHNISCHE UNIVERSITÄT DARMSTADT

N. Bornemann, H. M. Sauer, E. Dörsam

<u>Overview</u> Thin Film Behavior after Ink Transfer in Printing Processes

Motivation

- Graphic vs. functional printing
- Printing processes for organic electronics, challenges
- Film formation process in R2R: Process chain

Theory

- Navier-Stokes in the lubrication limit: The Landau-Levich equation
- Effects of surface tension and concentration gradients
- Stability analysis: Phase diagrams

Stability analysis

- Constant surface tension
- Why is a puddle stationary flat?
- Additional forces

<u>Motivation</u>

Graphic vs. functional printing

TECHNISCHE UNIVERSITÄT DARMSTADT

GRAPHIC printing:

- blue ink gravure printed on PET,
- 1.2mm x 0.9mm, height ~ 4µm

⇒ HOMOGENOUS, DEFINED DOT SCREENS

FUNCTIONAL printing:

- SY organic polymer for OLEDs, gravure printed on PET,
- 240µm x 180µm, height ~ 30nm

\Rightarrow HOMOGENOUS, DEFINED CLOSED LAYERS

<u>Motivation</u>

TECHNISCHE UNIVERSITÄT DARMSTADT

Printing process for organic electronics: Challenges

Thin and homogenous layers i.e. OLEDs:

- dewetting: rupture, holes
- crystallization

Multilayer devices:

- compatibility of material sets
- stability of under-laying film
- diffusion of liquid or solutes into under-laying film
- register accuracy

Multi-component fluids:

- different solutes: polymers and/or small molecules
- different liquids: water-based and/or solvent-based solution

240µm x 180µm, height ~100nm

P3HT on PET

<u>Motivation</u>

Film formation in R2R: Process chain

<u>Theory</u> Navier-Stokes in the lubrication limit: The Landau Levich equation

Small perturbed liquid film, leveling time:

$$\tau \propto \frac{\sigma h_0^{-3}}{\eta \lambda^4}$$

[2] L. Landau, B. Levich, Acta Physicochim. URSS. **1942**, 42-54
[3] A. Oron, S.G. Bankoff, Rev. Mod. Phys. **1997**, 69, 931-980
[4] P. de Gennes, Rev. Mod. Phys. **1985**, 57, 827-863.

<u>Theory</u>

TECHNISCHE UNIVERSITÄT DARMSTADT

Effects of surface tension and concentration gradients

Thin liquid film of a binary system:

- C : concentration of solute in solution
- σ : surface tension
- λ_{v} diffusion length

Useful relation [1]:

$$\frac{\partial C}{\partial z}\Big|_{z=0} = \frac{\lambda_D}{2k_B T} \frac{\partial \sigma_{sf}}{\partial C}$$

In the following: Evaporation and temperature gradients effects are neglected.

[1] J.W. Cahn, J. Chem. Phys. 1977, 66, 3667

<u>Theory</u>

Stability analysis: Phase diagrams

When do we have solutions of L.L. eq. (1) for <u>stable</u>, homogenous flat, large-scale films concerning $\underline{C}, \underline{\sigma}$ <u>gradients</u> and <u>Van der Waals</u> forces?

STABLE:
$$\frac{\partial h(x,t)}{\partial t} = 0 \implies \text{eq.}(1) \rightarrow h'(h)$$

GRADIENTS of $C, \sigma : \rightarrow \beta$
VAN DER WAALS : $\rightarrow A \implies h'(h)|_{\beta, A, c_0}$
INTEGRATION CONSTANT: c_0

Constant surface tension

No additional forces: $\partial \sigma / \partial x = 0$ and A = 0

Why is a puddle stationary flat?

No additional forces: $\partial \sigma / \partial x = 0$ and A = 0

Why is a puddle stationary flat?

No additional forces: $\partial \sigma / \partial x = 0$ and A = 0

Additional forces

Gradients in C , σ : $\beta = 2$ and Van der Waals forces: A = 2

TECHNISCHE UNIVERSITÄT DARMSTADT

Thin Film Behavior after Ink Transfer in Printing Processes N. Bornemann, H. M. Sauer, E. Dörsam

Technische Universität Darmstadt, Germany Institute of Printing Science and Technology

Magdalenenstr. 2 DE-64289 Darmstadt Tel. +49 (0) 6151 16-3732 bornemann@idd.tu-darmstadt.de http://www.idd.tu-darmstadt.de

Bundesministerium für Bildung und Forschung

This work was funded by the BMBF under grant no. 13N10760.

